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Corrections to the hydrodynamic limit for an infinite chain of coupled harmonic 
oscillators are obtained. This makes more precise the asymptotic picture for this 
type of evolution of a system with infinitely many degrees of freedom. 
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1. INTRODUCTION 

In refs. 1 and 2 the limiting hydrodynamic equation was established for the 
infinite chain of harmonic oscillators as well as a "next" approximation 
which is valid for a longer macroscopic time interval. The limiting Euler- 
type equation reads 

~tP(t; x, O) = A(O) f--~ P(t; x, O) (1.1) 

where ['(t, x, 0), 0 s I - n ,  n), is the spectral density 2 x 2 matrix function at 
a (macroscopic) moment t e E at a (macroscopic) space point x ~ ~, A(O), 
0E I - n ,  n), is the matrix function of the form 

 lo, io,o,(o,~ V~ , ,2 ,  
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and the function co(0), 0 e I - re ,  r~), is related to the harmonic (see below). 
Equation (1.1) describes the motion of the harmonic chain on a micro- 
scopic time interval of the order ~-1, e > 0 being the scaling parameter. A 
"further" approximation describing the motion of the harmonic chain on 
microscopic time intervals of the order e -2 is related (after appropriate 
change of variables) to the equation 

?5 F (t;x,O)=A(O) -~x P~(t;x'O)+~B(O)-z--3f~(t;x'O) (1.3) 
~T X -  

where B(O), 0 s [ - re ,  re), is the matrix function 

See ref. 2 for details. 
In the present paper we restrict our attention to microscopic times of 

the order ~-1 (the Euler regime). However, we study not only the limiting 
Euler equation, but its correction of the first order in e as well. This means 
that we are able to estimate the difference between the solution of (1.3) and 
the microscopic dynamics by o(e) (see Theorem 1 below). It is believed that 
the correction of the order e is related, at least in a generic situation and 
for short times, to a "Navier-Stokes" picture. (3) We refer the reader to 
ref. 2 for details. 

We discover in this paper the same equation (1.3). However, the 
problem of deriving this equation as a first-order correction to (1.1) for 
Euler's regime (microscopic time of order e - l )  differs from the problem of 
deriving it for e-2 time scaling which was considered in ref. 2; this is reflected 
in the fact that in the present paper we should impose more restrictive 
conditions on harmonic potentials and initial states. In a general situation 
of nonlinear interaction, it is even not clear whether the two equations 
must coincide: the fact that they are the same for the harmonic oscillator 
model may be related to its particular character. 

In a separate paper we shall study higher-order corrections to Eq. 
(1.1). 

2. PRELIMINARIES AND BASIC RESULTS 

The phase space for the infinite chain of one-dimensional classical 
real-valued spins is N = ( N x R )  Z. The (formal) harmonic oscillator 
Hamiltonian is 

H(x_)= ~ [P---~+~V(li--k[)qiqk], x={(ql, p,),l~Z}~ (2.1) 
i ~ Z  k 
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To make the arguments simpler, we assume that the potential V has the 
following properties: 

(i) The sequence V(k), k >t 1, is from I1. 

(ii) The Fourier transform ~.k~e~k~ 0~[--Tz, 7t), is of the 
form [1//3(0)] a, where/3(0) is an even positive trigonometric polynomial. 

The function co(0)= 1//3(0) will play an important role in future 
arguments. 

The solution of the Cauchy problem for the (infinite) system of 
equations of motion with the Hamiltonian (2.1) is given by the following 
formulas (provided that their rhs are convergent; see refs. 4 and 5): 

where 

q~(t) = ~ [Ul'~l(t)q,+ U~'~z(t)p,] (2.2a) 
l E Z  

pk(t) = ~ [U~'~_,(t)q,+ U~'~_t(t)p~] (2.2b) 
I E 2e 

U k" ( t ) = ~  f ~ dO e -ikO cos[eo(O)t] (2.3a) 

1 ~ e_ik o sin[~o(O)t] 
Ul'Z(t) =-}-~f_. dO o9(0) (2.3b) 

U~'l(t) = -~-~ dO e -~k~ co(O) sin[co(O) t] (2.3c) 

and {(ql, P/), [E Z} e N is an initial datum. 
We suppose that a family {['(x, 0), x e  R, 0e  [ - i t ,  7t)} is given, where 

F(x, 0 )= ( /~ ' e (x ,  0), ~ , f l = t ,  2) is a 2 x 2  matrix and the following 
conditions are fulfilled 

O) P~,~=P~,~ =o 
(I[) P2,2(x, o)= g(x), Pl, lIx, o)= g(x) P2(o) 

where g is a nonnegative bounded C2-function with bounded derivatives, 
and/3(0) is the polynomial 1/o9(0). 

Finally, assume that we are given a family of states { g~, e > 0 } of the 
spin chain, i.e., of probability measures on the phase space X (in 
probabilistic terms, a family of R2-valued discrete time random processes) 
which obey the following conditions. 

(a) The random variables pj, j~2_ [on (X,/~)] are independent, of 
mean zero, and of variance ( p } ) , ~ =  g(ej), j e  2. 
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(b) The random variables qj, j~Y_, are of mean zero and of 
covariance ( qjq; ) ~o = [g(ej) g(ej,) ] m  Qj, j, j, j ,  ~ 7/, where 

1 
Q k ( = Q _ k ) = ~ f _  dOeik~ 2, k~7/  

(since /3 is polynomial, Qk = 0 for all but a finite number of k's). 

(c) The sequences {pj} and {qj} are mutually independent. 

Conditions (a)-(c) are related to a "local equilibrium picture" for the 
harmonic oscillators interacting via the potential V. 

Notice that, as follows from (a)-(c), for any ~, fl = 1, 2, any x e ~, and 
l~7/, 

~ 2rcjl~ lim (YD ~xjY{~ ,~]+t)~ ~= dO f'~'~(x, O) e-~t~ (2.4) 
e ~ 0  

where y) = qi, Y~ = &" 

Remark 1. An example of a family {#~} is constructed as follows (it 
is worthy to discuss only the construction of the joint distribution for the 
qj). Let {~j, j e 7/} be a sequence of i.i.d, random variables with mean zero, 
variance one. We set 

where 

q j=  ~ gl /Qj- /  
j '~E  

/ ,  

( = Q - k )  = Jl_= dO ei~~ 

Remark 2. The above example does not seem to be generic from the 
point of view of the theory of infinite-volume Gibbs distributions. However, 
as we said before, our construction may be, in principle, extended to the 
case where co is of a more general form. In particular, one can assume that 
(o is an even positive trigonometric polynomial which corresponds to a 
finite-range interaction. For  that case, the equilibrium DLR measure 
corresponding to the Hamiltonian (2.1) is unique for any value of the 
inverse temperature f l>0 .  Moreover, this assertion still holds for a 
"temperature" which depends on the lattice point j e 7/(provided that such 
a dependence is "regular"). For example, one can admit that fl(j) is of the 
form flo(gJ), where rio(X), x ~ ~, is an apriori given, strictly positive, bounded 
C~-function. The family of the corresponding DLR measures fi~ will have 
properties analogous to (a)-(c). 
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The results of refs. 1 and 2 claim that for any x, t ~ ~ and le  Y there 
exists Euler's hydrodynamic limit for the covariances, 

lim (YE~-~x](e-lt)~ Y~-~xl+'(e t))"~=2-~u 3 dOP:'~(t;x,O)e -il~ (2.5) 
c ~ 0  

where P~''6(t; x, 0), ~, fl = 1, 2, form the 2 • 2 matrix F(t;  x, 0), which may 
be defined as the solution of the linear differential equation (1.1) with the 
initial datum F(0; x, 0) = F(x, 0). The covariance in the lhs of (2.5) (and 
everywhere in the sequel) is understood as the sum 

2 
E E E U;;al(8-1t) U~' f l l (e - l t ) (YD- lx]  ,6t ul _k lY[  _lxj+l_ll~#e 

~1,/~1=1 kleZ l leZ 

Our goal in this paper is to study corrections to limit (2.5). The first 
correction comes when we regard the limits a, fi = 1, 2, 

l i m - 1  = - - 1 6  ~ U r t  ~ o  e ((Y[~ 'x]( g t)YE~-~]+t(e l t ) ) vo -  dO['~''6(t;x,O)z -it~ 

(2.6) 

The higher corrections will be obtained in a separate paper. 

We now pass to the formulation of our results. To avoid problems 
related to "Diophantine effects" caused by the lattice, we perform an 
additional extra integration. Here (and below) [w] denotes, contrary to 
usual practice, the integer closest to a real w (which is defined by 
- 1 / 2  <<. w -  [w] < 1/2); A(O) and B(O), 0~ [-~z, re), are the 2 x 2  matrices 
(1.2) and (1.4), respectively. First, we formulate the result in "integral" 
form. 

T h e o r s m  1. Suppose the above conditions (i)-(ii), (1)-(II), and 
(a)-(c) are fulfilled. Then for any ~, f l=  1, 2, t, x e  ~, a n d / e Z ,  

[~1/2 
l ime -1 du (y{~_,~+~a(e l t)y~-ix+u]+l(g-lt))u~ 
e ~ 0 / ~ -  1/2 

x, ] f ,~dOP~'~(t; O)e -*'~ = 0  (2.7) 

where P2,~(t; x, O) = (P~,'/(t; x, 0), a, fl = 1, 2) is he solution of the Cauchy 
problem 

a P2~(t;x,O)=A(O) O 0 2 . at ' -~x P2,~(t; x, O) + eB(O) ~ F2.e(t; x, 0) 
(2.8) 

&,~(0; x, 0) = P(x, o) 
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A "differential" formulation of the correction result is given in the 
following theorem. 

Th eorem  2. Suppose the conditions (i)-(ii), (I)-(II), and (a)-(c) 
above are satisfied, and moreover that the function g is a positive 
trigonometric polynomial 

N 
g(x) = ~ [ak cos(kx) + bk sin(kx)] (2.9) 

k=0 

Then, for any c~,/? = 1, 2, any x e R, and l E Z, 

[(1/2 
lim t ~ l ime -~ du (yE~=~x+.3(~-lt) ~ y[~ ~ l x + u ]  +l(~; 11))~ 
t--*O ~ 0  [_~-- 1/2 

1 dO P~'e(t; x, O)e -*t~ 
27z _~ 

1 dO B(O) (x, O)e -*'~ (2.10) 

A stronger version of this type of assertion is as follows. 

T h e o r e m  3. Under the same assumptions as in Theorem 2 for any 
~, f i= 1,2, any t, x e R ,  and lEZ, 

fl/2 !im0~-i l ime -1 du (y~_ ,x+. l (e - t ( t+r) )y~_~x+,a+, (e  l ( t + ~ ) ) ) ~  
e ~ O  1_r 

1 f ~ dOP=,~(t+.c;x,O)e -lie] 
2~ 

~ I c~2/~J ''e 0)e-it~ (2.11) 1 dO B ( O ) - -  (t;x, 
- 2~ _~ 8x 2 

Remark. The condition (2.9) is assumed in order to simplify the 
technical details of the proof. A similar idea works in a more general case 
where g(x) is represented as a sum of the form (2.9) with rapidly decreasing 
coefficients ak and bk. 

The next section of the paper is devoted to the proof of Theorems 1-3. 
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3, PROOF OF T H E O R E M S  1-3 

For the sake of brevity we perform the arguments for the case ~ = 3 = 1. 
We have 

f l/2 du ( q [ e - ~ x + u ] ( e - l t ) q [ e - l x + u 3 + l (  g l t ) ) o  ~' 
- 1/2 

E l u l l ( 8 - 1 t )  1,1 ~1/2 = Um'+l(g-xt) ~ 1/2 du (q[~-tx+u]_mq[~-lx+u]_m,),~ 
m,m' 

Um' + l te  ( P[~-lx + u]-m p[~-lx  + u] -m'  ) u~ 
2 

E { ul '  1( ~-1 1,1 = t)Um,+t(g-it) 
rn, m' 

Xf 1/2 d u [ g ( e ( [ e  1x + u ] - m ) ) g ( 1 3 ( [ 8 . - 1 x  + u ] - m ' ) ) ] l / 2 Q m ,  m 
o 1/2 

fl,  } 
+ g ~ 2 ( g - l t )  gm ,1,2+ l(g l t )  3m, m ' ~ 1/2 d u g ( e ( [ e - l x + u ] - m ) )  

(3.1) 

We shall consider the (1, 1) (1, 1) and (1, 2) (1, 2) addends separately. The 
(1, 1 )-(1, 1 ) term reads 

f S 1/2 1 e - into du ~ ~ cos[o(O)e- l t]  dO 
1/2 m,m' rc 

x e -i(m'+t)~ cos[e)(0')e i t]  dO' 

• { g (e ( [e - i x  + 12] - -  m)) g(g([e- ix  + bl'] - -  m')) } 1/2 Qm' m 

1 
f ~  imO COS[- fo(O)g- l t ]  dO =E-~7~2 e 

m,m' - -  ~ 

S x e i(m'+t)~ it]dO' 

x { [g(x - em) g(x - em')] 1/2 Qm,-m + O(82) } (3.2) 

where the term e-20(e 2) is bounded uniformly in x and m, m' and vanishes 
if I m - m ' l  is large enough. It is easy to conclude that the contribution of 
the term O(e 2) in the rhs of (3.2) is negligible for our analysis and hence 
may be disregarded in the sequel. 
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Now we write the finite part of rhs of (3.2) in the form 

1 f~  - imOcos[og(O)g - l t ]  dO 
4rc2 e m,m' --re 

f 
/ r  

x e -i(m'+t)~ cos[co(0')e-~t]  dO' 

1 
x g ( x - e m ) + ~ [ g ( x - e m ' ) - g ( x - e m ) ] + O ( e Z ) l Q m ,  m (3.2') 

where the term e 20(e 2) is again bounded uniformly in x and m, m'. As 
before, the contribution of the term O(e 2) in (3.2') is negligible for our 
analysis. 

Let us start with the first sum arising in (3.2'): 

f_ e 'm~ cosEm(O)  't3 do 

f 
ro 

x e "~ St]dO' 

x g ( x - e m )  ~ e-im'~ Qin, m 
in' 

/ z  

=4re: f~ c~ dO f]~ e - '~ cos[co(0')e It] do' 

x~  e i(~176 (3.3) 
m 

As in ref. 1, it is convenient to take a C~ approximation go for the function 
g which has bounded derivatives and obeys 

g o ( y ) = { g ( y  ) if y~[X--Cot ,  X+Cot] (3.4) 
if y r  

where Co > max0 leo'(0)] and cl > 0 are constants. 
Using the same kind of arguments as in refs. 1 and 2 (based on the 

estimates for the coefficients performed in ref. 5, we have that the rhs of 
(3.3) equals 
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1 dOcos[oo(O)e-lt] dO'e il~ lt]/~ 
4n 2 -,~ ~r 

x ~ e -i(~176 go(x - gm) + o(~ ~176 (3.5) 
m 

where the term o(e ~) decreases more rapidly than e N for any N > 0 .  As 
before, the contribution of this term is negligible. 

By using the Poisson formula [see, e.g., ref. 6, Chapter XIX, formula 
(5.2)], we rewrite (3.5) as 

f 1 ~ dOcos[oo(O)e l t]  dO'e il~ l t]fi2(O') 
4~ 2 _~ -~ 

x e -1 ~, ~O,x(e-1(0 + 0 ' +  2ku)) (3.6) 
k 

where go, x is the Fourier transform of the function 
zE N, 

1 f e go, x(z) go, dz 

go, x(z) = go(z + x), 

As in refs. 1 and 2, we arrive to the conclusion that the main contribution 
to (3.6) is given by the term with k = 0: 

(3.6)=~5~2 dOe 't~ cos[oo(O)e-lt] p2(O) dO 

x d ~ c o s [ o ) ( O - f b ) e - l t ]  
- -  TZ 

x E -1 gO, x(e-  l~b) + o(~ ~ (3.7) 

where o(~ ~176 has the same meaning as before and may be disregarded in all 
of what follows. 

Now, performing the change of variables z = e  l~b, we write the 
principal term in the rhs of (3.7) as 

1 dO e -il~ cos[co(0)g- Jt]/32(0) 
4n 2 _ .  

s  

x f ~-'= dz cosEc~(O - e z ) e - l t ]  ~,O,x(Z) (3.8) 
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From the construction of go it follows that there exists a positive number 
A such that 

(3.8)= ~ f~ dO e - '~ cose~o(O)e-it]/32(0) 

x dzcosEco(0-ez)e ~t] g0,~(z)+o(e ~) 
- - A  

(3.9) 

with the same meaning of o(e ~) as before. 
Now we analyze the second sum in (3.2'). It is convenient to use the 

Taylor expansion formula up to O(eZ); the remainder term will be negligible 
and omitted. Therefore, we have to study the quantity 

~ doe im~ dO'e iZ~ lt] 
m - - ) z  

1 
m le ~ m '  rn • g'(x-- em)e ~ (m-- ,, --im'O',~ 

m" 

S f~ = 1 dO cos[e ) (0)a - l t ]  dO' e -il~ cos[co(0 ' )e- l t ]  
4re 2 _~ 

m 

(3.10) 

Making the same construction as before for the function g', we obtain 

(3.10) = ~ f dO COS[O)(0)/~-lt] f dO'e i,o' cos[e)(0')e l t ]  

• A, go, x(e (0+0'))+o(e ~) (3.11) 

o(e ~176 still has the same meaning as before. After the change of variables 
z=e  1(0+0'), we arrive at the conclusion that the term on the rhs of 
(3.11) may be written as 

arc 2 _~ 

f 
A 

• dzcosEco(O-ez)e - l t ]  ~;,x(z)+ o(e ~) 
A 

(3.12) 
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Performing the same calculation for the (1, 2)-(1, 2) addend on the rhs 
of (3.1), we get the quantity 

1 [~ e i,o sin[-co(0)e l t]  [A s i n [ ~ o ( O _ e z ) e - i t ]  
4rc2 J ~ dO - ~ J a dz oo(O - ez) ~,O,x(Z) 

Now we can write the lhs of (3.1) in the form 

1 
f dO e -il~ cos[co(0)g it]/32(0) 

7~ 

A 
x f  d z c o s [ o ) ( O - e z ) e  l t ]  ~,o,x(z) 

A 

+4re ----51 f~_~ dO e_izosin[co(O)eo)(O) i t ]  

f 
A s i n [ ~ o ( O _ e z ) e - l t ]  

x -A dz co(O-  ez) g,o,x(z) 

1 ;  o i,ocos o,o,  +~2 

x d z c o s [ c o ( O - e z ) e - l t ]  g;,~(z) (3.13) 
- A  

It is convenient to rewrite the two first addends in (3.13) using the 
exponential representation of cos and sin: 

1 e,~ P i~ ~- D -i~176 
J dO e - i l~  - ~  /32(0 ) 

4re 2 2 

f 
A eioXO ez)~-l, + e io)(O sz)e It 

x dz #o,~(z) 
-A  2 
1 ~rc eia~(O)e tt e - i ~ ( o ) s - t t  

+ 
j ~ dO e -~t~ 2ico(O) 

f 
A eico(o 8z)e It-- e ic~ 

x dz gO, x(Z) (3.14) 
A 2io)(0 - ez) 

Consider first the terms with the same sign of the exponents. For example, 
take the term with the plus sign: 

l f~  e~O,(o)~ ', fA  eiO,(O-~z>-b 
4~ 2 dO e -a~ /32(0) dz #O,x(Z) 

2 A 2 

I f = eia'(~ f A eico(O-ez)e 1' 
4~z2 dO e -~'~ - -  dz ~o,x(z) (3.15) 

_~ 209(0) - A 209( O -- eZ ) 
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It is convenient to add and subtract, under the inner integral in the second 
term in (3.15), the quantity 1/co(O)=/3(0). We have to estimate the integral 

~t eiOO(o) e tt A e ic~ lt f 1 

1 f dOe il~ - f dz 
47l: 2 ~z 2o)(0) a 2 ~co(0 ~- ez) 

Taking the expression 

1 .~ = (Dt(O)gz JI- O(g2Z 2) 
~(0) /  COO -- eZ) co(0) 

(3.16) 

we conclude that the integral (3.16) is o(e). 
In a similar way one can treat the term with the minus sign. 
Hence, the only contribution in (3.14) which is not of order o(e) is 

given by the sum of terms with the alternate exponential signs: 

l f~ eio,(o) e tt fA e- ioJ(O ~z) e - t t  
41r2 dO e -il~ ['2(0) dz ~,o,x(z) 

2 A 2 

7z --ic~ e-tt A eico(O-ez) e it 
+~l f =dOe-il~ 2 p2(O) f Adz 2 ~,o,x(Z) 

1 r~ elan(O) e-It A e-io3(o ez)e It 
+ 4rc~- ~ f dO e - ' ~  P2(O) f dz &x(Z) 

2co(0) A 2co(0 - ~z) 

l f"  i~o~1, fa  eiO,(O-,z)~ -~, +--~2 _ dOe-iz~ P2(O) dz ~0.x(z) 
2co(0) _~ 2co(0 - ez) 

1 fg dO e -ilO eif~ ( ~ ) P ( O ) P t ( O ) f A  dz e-i~ II 
+ e 47z~ . - A  2 ~;,x(Z) 

+ e ~ f doe -i'~ P(O) P'(O) dz g;,x(Z) 2 -A 2 
(3.17) 

The last two terms give the contribution of O(e). We shall compare these 
with O(e) terms arising from the third and fourth lines of (3.17). 

Let us consider only one of these, the other one is evaluated in a 
similar way. By using the Taylor expansion formula for co(O-az), we 
obtain 
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1 ~r eie)(O)e ~t A 

4~z2f d O e - " ~  -~ 20)(0) -A 20)(0--8Z) 

n elm(O) ~-lt  A =If dO e ilO f dz 
4 ;c2 --re 20)2(0)  A 2 

1 fTr ilO e i~176  A dz  
+ e ~  - .  doe 2093(0) -A 

e-ioJ(O--ez)e-lt 
dz gO, x(Z) 

e-i~o(O-ez)~ It 

gO, x(z) 

e - & ~ 1 7 6  ez)e-]t 
2 z~'~ + O(eZ) 

(3.18) 

The first term on the rhs of (3.18) will be considered, subtracting the Euler 
part. So we concentrate on the e term and write it in the form 

1 ~ 0)'(0) fA ei~'(o~, 
e-~2 f doe ,o d z - -~Z~ ,o , x ( z )+O(~  2) (3.19) 

20)3(0) A 

Passing from the Fourier transform to the x variable and writing the 
function 0) in terms of t3 we see that the first addend in the sum (3.19) is 

4re _~ ~ P(O) /3'(O) g'o(X +0)'(O)t)+o(e ~) (3.20) 

This quantity is just the opposite of the fifth addend in (3.17), after the 
calculation of the limit in e. Now after resuming all the calculations, we 
have 

2 7r eio)(o)e -I t  
f dO eilO /~2(0 ) lhs of (3.1) = 4~ 2 -~ 2 

A e--io(O--ez)e ~t (" 
x j dz go, x(z) 

-A 2 

2 ~ e im(O)e-lt - f  + 4n 2 dO e ,o [,2(0 ) 
_.  2 

f 
A eico(O-ez) ~ It 

x dz ~o,x(z) + o(e) (3.21) 
_~ 2 

Performing the same type of argument as in ref. 2, we obtain that the finite 
part of the rhs of (3.21) is given by 

822/61/1-2-26 
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f~ exp( - ilO) 2 d O  /~2(0) ~ 
2re ~ 4 

foo exp[ -iz2/2co"(O)et] 
x oo dz [2rcco,,(O)at]l/2 go(x+co'(O)t+z) 

+~2 f~_~ dO exP(4- ilO) ~a(O ) -~1 

" �9 2 tr f ~  exp[Iz/2co (O)et] 
x -o~ dz [21rco,,(O)et]l/2 go(x-co'(O)t+z)+O(a 2) (3.22) 

The final remark is that the function go in the integrand in (3.22) may be 
replaced by the original function g. The difference between the corresponding 
terms may be estimated by means of integration by parts. It is not hard to 
check that it is again O(a2). This finishes the proof of Theorem 1. 

In order to prove Theorems 2 and 3, we need to restrict the class of 
initial functions assuming (2.9). 

As before, we perform the limits (2.10) and (2.11) only for the first 
addend in (3.22). We have to evaluate the quantity 

1 2 f~ doeXp(-ilO)~2(O ) 
st 21t _ ~ 4 

f 
oo exp[-izZ/2co "(O)at] 

x - ~  dz [27zco"(0)at]l/2 [ g ( x  + co'(O)t + z) - g (x  + co'(O)t)] 

Consider the contribution of a single trigonometric monomial figuring on 
the rhs of (2.9), e.g., of cos(kx). We have to consider 

1 27r f~doeXp(-i 'O)~2(O)x/~ak f~ dzexp[-iz2/2co'(O)at] 
at - 4 - ~ [27wo'(O)at] 1/2 

x (cos {k[x + co'(O) t + z] } - cos {k[x  + co 'O)t ]  }) 

Writing cos as the sum of complex exponentials, we obtain the quantity 

atl 27z f]  ~ dO exp(-i,O)4 ah2(0)ak ~/~ f~-oo dz 
exp [ - iz2/2co" (0) at ] 

[27rco"(O)at] 1/2 

1 x ~ (exp{ik{x + co'(O)t + z] } + exp{ -ikEx + cg'(O)t + z] } 

- exp{ikEx + co'(O)t] } - exp{ - ikEx + co'(O)t] }) 
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Now group together the terms with the same sign in the exponent. For 
definiteness, take 

1 1 f~ d o e X p ( - i I O ) ~ 2 ( O ) a k e x p { i k [ x + c o , ( O ) t ] } x / 7  
at 2re ~ 2 

x f *~ dz exp[ - i z2 /2~  
-oo [2rcco"(O)at] 1/2 

at 2x _~ dO exP(2-ilO)/$2(0) ak 

[exp(ikz)  - 1 ] 

x e xp{ i k [x  + co'(0) t] } {exp[ - ioo"(O)etk  2 ] - 1} 

Evaluating the other integral in an analogous way, our quantity becomes 

1 ~ exp( - 1 ~ f ~ dO ilO) fi2(O)a k 
et 2 

x ( exp{ i k [x  + co'(0)t] } {exp[- - ia )"  (O)etk 2 ] - 1 } 

+ exp{ - i k [ x  + co'(0) t] } {exp[ - i ro"  (O)etk 2 ] - 1 } 

Taking the expansion in et, we obtain 

f~  e - ilO 
1 1 dO b 2 ( O ) a ~ ( - i c o " ( O ) a t k : c o s { k [ x + c o ' ( O ) t ] } + o ( e ) )  

So in the limit (2.10) we get the quantity 

l x e - ilo ~ 2 

2--~f dO--2- -P  (O) i c ~ 1 7 6  

1 ~'~: e - i l ~  d 2 
= 2---~ J_~ T P2(~ i~o,,(o) ~ x  2 ak cos(kx) 

This gives the proof of Theorem 2. 
The limit (2.11) is performed in a similar way. To avoid the repetition 

of the arguments, we omit the detailed calculation. 
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